Biarri EMI has rebranded to Cru Software, refining their rostering and scheduling offering to meet the specific needs that make them one of the leading software companies for the resources industry.
Cru Software is dedicated to improving the process of workforce planning and allocation, and are constantly striving to improve their Saas solution in order to provide organisations with cutting edge technology that help to streamline their workforce processes, save time and money, increase productivity and profit.
Our mission is to simplify, organise, and anticipate the demands of the world’s most complex workforces. We are excited to take on a new direction, tackling the complex issues of workforce rostering and scheduling. As a result of what we offer, resource teams have the right tools to automate time-consuming processes, provide insights on business demand and capacity, and leverage the powerful optimisation tools from the Biarri group to ensure the right people are doing the right jobs on the right day – Jason Cameron, CEO, Cru Software
Intelligent Workforce Rostering Software
Cru Software’s innovative and agile rostering software is designed to simplify complicated and manual processes. Cru Rostering removes the complexity so many organisations face, giving your team more control to create efficient and effective rosters, while prioritising the health and safety of your employees with improved fatigue management.
Having helped over 90,000 workers worldwide, Cru Rostering provides a powerful Cloud based Saas platform to simplify the complex workforce. The other unique aspect of Cru Rostering is the unprecedented level of visibility. Forward planning has never been easier, by being able to visualise months of data and having the necessary information on hand.
Smarter Scheduling Software
By consuming key data, Cru Scheduling enables your team to produce an optimised schedule, ensuring consistent and repeatable results every time. Previously executed through disparate manual systems, Cru Scheduling streamlines and consolidates multiple sources of data into one platform simplifying how your team approaches scheduling. Having the correct information allows schedulers to make intelligent and informed decisions around availability, work priorities to minimise planning effort and operational downtime. Combined with the smarts of Cru Rostering, build better schedules for your FTE and contractor workforce.
Read how Cru Software improved Origin Energy’s operations after adopting an automated rostering software and optimised scheduling.
Cru Software
Cru Rostering and Scheduling has a proven track record with some of Australia’s largest Energy and Mining companies, helping businesses maximise value from resources. To book a demo or for a more comprehensive breakdown of Cru Rostering and Scheduling, visit Cru Software, and discover how you can simplify complex rostering and scheduling with the right tool.
https://biarri.com/wp-content/uploads/2022/02/Biarri-Cru-Introduction-Blog-Post-1.png9001600Irina Svishchevahttps://biarri.com/wp-content/uploads/2022/05/Biarri-White-Logo-Tag-Line-700-×-700-px-300x300.pngIrina Svishcheva2022-02-24 11:27:082022-02-24 12:06:14Cru Software: The Dynamic Solution for Workforce Rostering & Scheduling
From the paddock out west to the head office in Brisbane, to the dining room table in Beijing. The journey of farmed products isn’t always as seamless as they seem with the supply of harvest and livestock products. Producers face challenges in managing crops and livestock, battling tough environmental factors, and competing in volatile markets. Identifying the best markets with the greatest margins remains one of the greatest challenges that producers in agribusiness face, until now. This blog will explore the shortfalls of ‘textbook’ S&OP and the limitations it can have for agribusiness, and will also give you an insight into how you can mitigate these challenges with the correct solution and tool.
For agribusinesses, the endeavour to maximise returns within a dynamic marketplace can largely fall on the shoulders of one or a few, generally executing a standard S&OP process through legacy systems or a single spreadsheet on Excel. Their experience is vital as they understand not only the business’ production and processing capability, but also they understand their customers’ demands and the parameters they need to be delivered.
Sales and Operations Planning (S&OP) is a business management process that aligns supply chain functions to enable executives to make the best financial and business decision
As markets continue to diversify internationally and demand for quality farmed products increases, agribusinesses need to make decisions based on natural resource variability and market volatility to receive the greatest return on their product. But in the current climate, can those producers rely on textbook S&OP to make the most informed decisions? How in this modern global market can agribusinesses remain sustainably profitable?
Let’s take a closer look.
Textbook S&OP
With significant (and growing) complexity in agribusiness supply chains, a standard S&OP process is often propped up by the experience and expertise of a ‘seasoned agri veteran’. For years, this individual may have filled gaps in a standardised process with deep knowledge of business idiosyncrasies and strong intuition in addressing supply or demand changes. The decision-making process and the framework these decisions are made upon go beyond the capability of a standardised sales and operations plan.
Relying on one or two individuals limits sustainable success and reduces time spent on valuable activities like contingency planning. Future-proofing your businesses success is reliant on contingency planning by implementing systems and processes that automate decision-making, removing the burden and pressure placed on key individuals.
Forward selling
The unpredictable nature of ‘harvest’ and ‘livestock’ farming is a prime example of why agribusiness requires a more flexible approach to S&OP. Take for example a meat producer; supply dictates the number of different SKUs available, which is an administrative nightmare to reconfigure and coordinate when market demands shift.
The unpredictable nature of supply has ramifications on the sales front with overselling and not being able to fulfil agreements. The flow-on effect can be critical to a businesses reputation and jeopardise relationships.
So, how can businesses change their approach and move away from the conventional way of ‘commodity selling’ and have more control over their supply and sales and increase the value-add of their products at the same time?
Simple – move towards ‘Forward selling’. Forward selling creates synergy across sales, supply and production by knowing the exact number of products there is available to sell at a point in time and negotiating contracts accordingly. I.e. move from reactive to proactive.
Are we on the same page?
While it is important to consider the correct approach to S&OP, it is just as crucial to have a system and tool to support it. Too often businesses are stuck with a static excel spreadsheet or a dated enterprise business application that requires a huge amount of effort to maintain and use effectively.
We’ve experienced a real appetite for producers to better leverage their data to make more informed forward looking decisions. There is a shift in the industry from reactive selling to proactively ensuring Australia’s high value agricultural products get the premium they desire, not languishing in the supermarket budget section
Jonathon Allport – Agribusiness Analyst
A spreadsheet or enterprise application can sometimes be effective in keeping a business running, but the slow and static process brings other challenges and issues. One of the shortfalls of these systems is the inability to conduct what-if scenario modelling or to adjust to new and later opportunities. Comparing options and finding the best outcome becomes difficult, and business decisions have to be made from limited information and modelling.
Having the correct data but not being able to compare options can have large financial ramifications and can result in a loss of opportunities due to poor decision making.
Let’s look at a concrete example of how this can be done with a modern tool.
A new way with WOLF
Wolf is Biarri’s modern web based tool that bridges agribusiness sales and production planning, making decisions quicker and easier with a quantitative model. This approach and tool was applied with one of the world’s largest producers of lamb and mutton and can also be applied to all types of agribusiness.
Alliance Case Study
In such a fast moving and volatile market place, making the right decision consistently, is difficult with the instability in demand, production and logistics. Alliance faced this common agribusiness challenge, and they required a system and approach that improved their day to day sales and production process to cope with their high production volumes.
Alliance Group is the world’s largest processor and exporter of mutton and lamb, representing over 15% of the world’s cross-border trade. Its facilities process over 87 Million lamb and sheep per annum, exporting to 65 countries, and they produce over 1,200 products.
“Being able to plan and maximize returns within our dynamic market place has always been challenging, so when we talked with Biarri about developing a new optimization model with more scenario modelling capability we could see the potential of planning with confidence that every variable had been optimized to minimize cost and maximize revenue within our market plan.
The team at Biarri were quick to understand the variables within our planning process and have developed a platform that enables us to react to the moving market conditions with confidence.”
Craig Spence, Marketing Accounting & Administration Manager, Alliance Group
Before coming to Biarri, Alliance solved its S&OP problems with some advanced mathematical modelling in Excel. After using this tool for a number of years, it was realised that it simply wasn’t enterprise grade lacking proper governance, user control, historical data audits, data lineage and much more. It was at this point that they came to Biarri and Biarriintroduced them to Wolf.
With the integration of Wolf and a new optimization model, Alliance were able to achieve:
A reduction in planning effort, with trivial decisions being automated giving time and effort back to high priority tasks;
Greater control through visibility. Alliance had an unprecedented levels of visibility, arming key stakeholders with greater control over their meat sales and production planning activities. The increased level of transparency allowed for faster and smarter sales and production decisions through scenario modelling;
Increased revenue through identifying optimal product mix. Production and sales team could now plan and select the right option with confidence, knowing that Wolf had optimised every possible variable to minimise cost and maximise revenue.
Want to know more?
Speak to an expert today and discover how you can better manage natural variation and market volatility below.
Speak to an expert
https://biarri.com/wp-content/uploads/2022/01/Im-1-1.png18903780Irina Svishchevahttps://biarri.com/wp-content/uploads/2022/05/Biarri-White-Logo-Tag-Line-700-×-700-px-300x300.pngIrina Svishcheva2022-01-25 11:11:452022-01-25 11:17:49Leading to Greener Pastures with S&OP in Agribusiness
Few places on earth can break people like the Australian outback. Toughness is not enough to survive out there, let alone thrive. You must be smart, resourceful, and innovative to stand a chance.
In this part of the world, 2019 saw the culmination of a devastating nine-year El Nino. Things die during a regular El Nino. During this one, it was common to see livestock strewn along the road where they had perished for want of food and water. Then in the second half of the year, one of the worst bushfire seasons Australia has ever seen began and it made a difficult situation impossible.
Mike is a crop farmer, one of those tough-as-nails, wily, and innovative Australians who make their living in this environment. Reeling from this latest catastrophe and to keep ahead of the next disaster, he began exploring smart farming techniques enabled by artificial intelligence (AI). The technology he was pitched overlaid AI onto Big Data, and would have been integrated into his irrigation, pest control, and soil management systems to allow “precision farming.”
In theory, by refining the focus of his practices from the paddock level to the level of the individual plant, the technology could reduce wastage by up to 80 percent. That is a lot of extra (desperately needed) cash when you are trying to compete in a global market with little assistance from your government, against foreign farmers with lots of assistance from theirs. Add to that an environment where little will grow.
The salesperson’s pitch to Mike was compelling and showed a familiarity with the existential challenges faced by Australian farmers – supported by a clever application of AI generating potentially significant returns. But there was a problem: the business case the salesperson outlined raised doubt in Mike’s mind. The initial investment would be $500,000 with additional costs of $80,000 per annum for data storage and processing alone before maintenance and repair.
To put this in context, in 2020-21, average Australian farm cash income in US dollars, out of which the farmers pay their families’ income, was about $137,500 [1]. Profit was $79,000, which translates to a 1.6 percent rate of return on the farm assets (and the financial year 2020-21 was a good year for Australian farmers). Within that, average expenditure on crop and pasture chemicals (herbicides, etc.) and fertiliser was $63,000. Including water rights takes that expenditure to $100,000.
Assuming that the technology performed at its absolute maximum (80 percent cost reduction), and that it did not add to any other costs then, for the average Australian farm, this technology would, at the very best, be profit neutral going forward and would put it significantly into deficit for the first year. In short: if Mike’s farm were roughly average, adopting AI may have bankrupted his family.
The cart before the horse: technology before business
We live in a new era of obsession with AI. The technology is at once enchanting and increasingly pervasive, and everyone has something to say about it, from Elon Musk to your Uber driver. Our opinion is that almost nobody is looking at the main problem that it presents for businesses. Almost all are caught up in the engineering of what AI can do, while many more ought to be caught up the economics of what AI is worth.
To illuminate the problem, let us go back to the foundational question: what is AI? Fundamentally, artificial intelligence is the pursuit of the motivating dream that lays at the dawn of computer science in the 1950s. John von Neumann and Alan Turing, two of the “fathers” of the discipline, both explicitly imagined building machines that could mimic the operations of an intelligent mind [2]. Computers would become an AI insofar as the programs which “read”, operated on, and “wrote” data, represented in mechanical states and dynamics, could mimic the perception and processing of an intelligent mind.
Thus, for the next half-century and beyond, AI developed as a subdiscipline of computer science mostly dedicated to the original motivating dream of the discipline. Over time, further additions have extended this core: the growing integration between AI and robotics, the potential for linking advanced analytical systems using the internet (e.g., the Internet of Things), the use of AI to operationalise Big Data, the application to artificial intelligence to save lives, etc. However, the underlying drive and advance of the technology has been in the same direction: the development of algorithms (programs) that can mimic the operations of an intelligent mind, or better still, a super intelligent mind. Hence, the hype surrounding AI.
Humans may yet follow in the footsteps of gods and create a new form of intelligence to rival our own. At the least, we now have at our disposal technologies that offer the possibility of automating a broad range of human activities. We are not just talking about the automation of manual labour on the production line, for many of the major advances in AI particularly in the past decade have been in automating data processing and analysis [3]. One of the most thrilling (and terrifying) advances has been the advent of the GPT-3 algorithm from Open AI, the closest we have come yet to general AI, which can write entire, cogent essays from a single question on virtually any topic.
The world has lived through eras of obsession with AI before with two of them ending in so-called “AI winters” – per Michael Woolridge’s history of the field, The Road to Conscious Machines [4]. The first major winter began in the mid-1970s when the limitations of symbolic logic systems (basically, AI systems whose syntax was like the symbolic logic of mathematical proofs) were revealed, and funding for academic research quickly dried up. Essentially, it took far too much work to produce AI systems that could produce far too specific tasks, and the effort exploded exponentially the more you wanted to broaden them. The second major winter began in the late 1980s, when these troubles in academia caught up with industry, and corporations stopped investing in expensive AI decision aids based on expert systems, switching to cheap personal computers.
In the case of both winters, these advanced systems fell short of hype in what they could do, and what they could do was of limited economic value. It was not that AI was not useful, far from it. It was that the intuitive concept of AI, and the wild flights of imagination it encouraged, led to expectations front running the realised value propositions of the technology. The backlash over-corrected and set the scientific and economic advance of the technology significantly backward.
The current hype associated with AI is familiar to those with knowledge of the aforementioned history of the technology, and a warning sign that business, government, and public expectations about the technology may be running ahead of the reality. Scientific advances in neural networks and machine learning, vast improvements in computing power, and the advent of distributed computing have brought about a qualitative change in the capabilities of the technology. But modern AI is still not limitless, and it is still expensive, especially when machines must be trained to learn specific and novel task sets. If (when) disappointment with the attained value of modern AI is realised, we invite yet another AI winter.
The problem with AI is that the focus is presently on what it can do, not even with what it does do. At present the engineers are in the driver’s seat, and engineers’ strength is not always business outcomes because of their focus on possibility. Economics realises many things are possible, but also that resources are constrained and must be directed to the best possibilities. Paraphrasing the famous words of Lionel Robbins [5]: economics is the study of life as a relationship between ends and scarce resources which have alternative uses. Economics needs to be put in the driver’s seat when it comes to the question of AI adoption for any organisation, and engineering put under the hood. The question must not be the engineering of what an AI can do but the economics of what an AI is worth.
The solution: put economics back in the driver’s seat
The problem with AI is that the technology is presently steering the conversation, and that instead we need to lead first with economics and not engineering when it comes to AI adoption in organisations. Let us unpack why, so that we can better pose a solution to the challenge of restoring economics as the primary decision-making framework for AI adoption [6].
The first thing is to firmly establish what, exactly, and as simply as possible, the economic criterion for AI adoption is. This is straightforward enough: an AI system ought to be adopted by an organisation if and only if the profit the organisation can obtain after adoption is greater than the opportunity cost of that profit. Now, the single easiest error to make in economic reasoning is to forget opportunity cost, focus only on whether profit after adoption is positive, and commit to a suboptimal, possibly even bankrupting decision [7]. That is why it is so important to always remember opportunity cost: the value of the next best alternative. Typically, this is the profit achieved under the status quo, but it can also be the profit achieved by an alternative strategy (e.g., expanding payroll).
Consider the logic of Figure 1. Economists will recognise this formula is a particular case of a consumer (buyer) surplus maximising decision, where a rational consumer looks at their set of decisions and chooses the one which maximises their consumer surplus. The surplus concept is useful as it also helps explain why the situation faced by Mike arises. When pricing their AI products and services, producers analyse their potential customer’s gains and then choose a price point to maximise their producer surplus.
Figure 1: The basic economic principle of AI adoption – of which the right-hand side is extremely easy to forget.
Where this thinking can go wrong, as with Mike, is that producers fail to factor in the total cost of ownership, which includes all the other costs which arise with such a system such as maintenance, repair, installation, failures, lower than expected results, etc. Mike needs to consider all these factors, as well as the chance that the system could fail altogether, if he is to make an optimal decision. The above formula is valuable as a “cue” for the economic mindset, a habitual thought to always call to mind when considering AI adoption. Alone, however, it is not enough guidance for decision makers; it is too abstract. We need to be more specific.
The basic economic principle of AI adoption can be restated in what economists famously call “marginal” terms. What will be the change in profit obtained by AI adoption? Adapting this, we can unpack the basic economic principle of AI adoption. It now becomes something more specific: an AI should be adopted if and only if, relative to the next best alternative, the marginal benefit of its adoption is greater than its marginal cost. The next best alternative (the opportunity cost) will, again, typically be the status quo, but it could also be hiring another employee or outsourcing some tasks.
To make this as useful as possible, let us be still more specific. AI adoption can generate gains by improving the quality of our judgement (see Footnote 6). This improvement of our judgment leads to better quality decisions (typically by better quality predictions and prescriptions [8]). From the firm’s perspective this means:
We have better allocation/utilisation of the firm’s inputs
We have better quality/delivery of the firm’s outputs
In the first case this leads to lower costs, in the second case this would lead to greater revenue. In other cases where we improve the quality/delivery of the firm’s outputs it can simply lead to a better delivery of services, for example, in a hospital scenario this leads to more lives saved, hence an increase in the value of statistical lives saved. In addition, these outcomes may be generated directly or indirectly. In the latter case, the integration of AI may generate greater returns on existing assets by creating synergies that boost their productivity. For example, in Mike’s case, the AI offered a cost saving. By integrating AI into his irrigation, pest control, and soil management systems, he would have reduced wastage and enhanced the productivity of his existing assets, potentially reducing his required capital expenditures in the future.
On the other hand, the marginal cost of AI adoption consists of at least three main components:
The up-front cost of installation and setup
The ongoing operating cost of the AI system, and
The ongoing cost of maintenance and repair of the AI system.
When these components are converted into expected net present value, we have the basis for an economically informed decision as the following diagram illustrates (see Figure 2). To make the diagram more applicable, instead of the general inputs and outputs perspective mentioned above, we focus on specific value drivers to make the framework clearer.
Figure 2: The economic principle of AI adoption unpacked, what are the changes in benefits and costs relative to the alternative?
These are the economic principles of AI adoption, and they provide simple available cues for building and triggering a habitual economic mindset when thinking about AI adoption in organisations. To complete the system and expand these cues for a habitual mindset into the basis for a habit of behaviour, let us set down a simple decision tree for AI adoption (see Figure 3).
The decision tree consists of three simple questions, two are the responsibility of an AI salesperson to answer, one is a question that can be posed internally to the organisation. The first question is for the salesperson: what is the dollar or percentage gain that your AI generates? If the salesperson cannot answer in terms of revenue, cost reduction, or value of a statistical life, a conservative rule of thumb is to not adopt the AI. If the salesperson gives a sufficient answer, the second question may be posed to the salesperson: what are the dollar costs of installation/setup, operation, maintenance, and repair? Again, if the salesperson cannot answer, a conservative rule of thumb is to not adopt the AI. If the salesperson gives a sufficient answer, however, we proceed to the third question: given the next best alternative to this AI, are the marginal benefits of adoption (in expected net present value terms) greater than the marginal costs? If no, the alternative ought to be pursued, if yes, the AI ought to be adopted.
This might seem like common sense and relatively straightforward economic thinking, but as the saying goes the funny thing about common sense is that it isn’t that common. Notice how, when we put the economic process for making decisions about AI adoption in a decision tree, any given AI needs to meet a high bar to be adopted. Three out of the four endpoints conclude in rejection. Keeping these three elements of an economic attitude in mind, practicing them regularly and habituating them, are important for getting economics back into the driver’s seat when it comes to organisational AI adoption, and putting engineering under the hood. The problem is one of hype and expectations getting ahead of the reality of AI’s value proposition. The solution is to build good habits with simple heuristics that send us into the mindset of economics whenever assessing it.
Figure 3: A simple, three-step decision tree for any AI adoption problem. Note the high bar that AI must meet to be economically valuable.
Resolving Mike’s AI investment challenge, and others
Applying this simple heuristic to Mike’s situation, we can readily understand why he couldn’t make business sense of the salesperson’s pitch of AI-enabled precision farming.
As we discussed in the introduction, the salesperson suggested that Mike would achieve cost savings of 80 percent; the salesperson got past the first decision point. We saw that if Mike’s farm was roughly average, the relevant expenditures would have sat somewhere around $100,000. The dollar value of Mike’s savings would have been around $80,000 in the best-case scenario. The salesperson was also upfront about the dollar cost of the systems: $500,000 for installation $80,000 per annum in ongoing costs; thus, the salesperson got past the second decision point.
However, we can immediately see why the salesperson failed on the third decision point: the best-case marginal benefit of adopting the AI ($80,000) was less than the marginal cost ($80,000 plus the installation cost). Mike would have made less profit than his opportunity cost (e.g. doing nothing) if he adopted the AI and would have eroded the meagre 1.6 percent rate of return on his assets he was accruing. He may have even bankrupted his family by incurring a significant debt to purchase a profit-neutral technology. The technology (engineering) may have been amazing, but the economics was not.
Mike’s example is based on a real life situation experienced by the authors, and one but many of the real examples that we encounter every day in practice. Because it is based on economic reasoning, our heuristic applies equally to these other cases. Let us look at an example from medicine.
In May 2019, the Food and Drug Administration made a decision that created headlines around the world by approving the world’s most expensive drug treatment to date, Zolgensma. This medicine treats spinal muscular atrophy in infants replacing annual lifelong treatments with a once off cure. The minimum price is (only!) $2 million (USD) for a single treatment. To many this price point makes no sense, however, when we apply our economic heuristic, we can better understand why Novartis chose this fee.
Zolgensma is part of a new wave of drugs that promise to usher in a revolutionary era of personalised medicine [9]. This form of medicine uses AI to leverage Big Data and discover treatments bespoke to individual genetic profiles. Zolgensma works by replacing the defective SMN1 gene that expresses itself in infant spinal muscular atrophy with a normal copy. To discover this technology for bespoke genetic medicine, Novartis had to mine terabytes of genomic data to find the right compound which, when delivered, would introduce a highly specific change to a highly specific point in highly specific individual genomes.
Does this AI-enabled technology make economic sense? Let us apply our heuristic. In this case, the direct benefit of the technology is to save (quality-adjusted) statistical lives by improving the quality of life for infants debilitated by spinal muscular atrophy. The value of a statistical life used by governments and corporations across the world in daily policymaking is typically between $4 million and $10 million (USD). Novartis’ AI-enabled drug costs around $2 million (USD). Given we are talking about infants with an expected life of up to 80 years, there are a wide range of statistical lives that could be saved by the drug that would justify adoption. The marginal benefit (statistical lives saved) is greater than the marginal cost of adoption, the profit greater than the opportunity cost of doing nothing or even other drugs. This calculus may sound hard-hearted, until we remember that opportunity cost may also very well be the value of allocating funds to research infant oncology.
Putting economics back in the driver’s seat and engineering under the hood allows us to resolve investment decision as specific as whether a given farmer should adopt AI and as general as deciding among which biomedical priorities to allocate scarce research funds. Using an economic heuristic of worth, rather than an engineering heuristic of possibility, guides us to make better decisions that not only mitigate against the chance of a new AI winter, but also promote a more prosperous and healthier world.
Conclusion
There is no denying that AI is a powerful technology with the potential to not only automate but supercharge many things, from menial labour to biomedical data analytics. It at least therefore offers a vast expansion to human capability. There is, however, a risk involved in the understandable hype generated by AI. The risk is the expectations of researchers and industry can get way ahead of the reality of the technology. This invites the potential for yet another AI winter which delays the development and implementation of this extraordinary technology. Our argument has been that this problem can be traced back to an old problem in technology adoption whereby the engineering mindset of possibility dominates the economic mindset of value. In AI as with so many technologies, economics must be put in the driver’s seat and engineering under the hood to avoid expectations getting ahead of reality and the advent of disillusionment.
We proposed a simple heuristic to habituate the economic mindset when assessing AI-enabled technologies. Businesses, governments, individuals; all can profit from adopting the three simple questions we propose for arbitrating whether the value of an AI technology exceeds opportunity cost:
What is the dollar value or percentage gains created by the technology?
What is the dollar value of setup and ongoing costs?
Relative to the next best alternative, are the marginal benefits of adoption greater than marginal costs?
In short: don’t ask what AI can do. Ask what it is worth.
References
[1] Ashton, D, Martin, P, Frilay, J, Litchfield, F, Weragoda, A & Coelli R, 2021, Farm performance: broadacre and dairy farms, 2018–19 to 2020–21, ABARES research report, Canberra, March, DOI: https://doi.org/10.25814/ycy6-3p65. CC BY 4.0.
[2] von Neumann, John (1958). The Computer and the Brain. New Haven: Yale University Press; Turing, Alan (1950). Computing Machinery and Intelligence. Mind. 59(236):433-460.
[3] Sullivan, Joshua and Zuvatern, Angela (2017). The Mathematical Corporation. New York: Public Affairs.
[4] Wooldridge, Michael (2020). The Road to Conscious Machines. London: Penguin.
[5] Robbins, Lionel (1932). Essay on the Nature and Significance of Economic Science. London: MacMillan.
[6] Here we build on the work of Joshua Gans who has pioneered the economic analysis of AI systems with a series of papers, and a summarising book: Agarwal, Ajay, Gans, Joshua and Goldfarb, Avi (2018). Prediction Machines. Cambridge, Massachusetts: Harvard Business Review.
[7] This confusion is often invited by economists using “profit” as shorthand for “economic profit”. Economic profit is “accounting” (i.e. standard) profit minus opportunity cost.
https://biarri.com/wp-content/uploads/2022/01/Biarri-Agribusiness-Banner-3.png18903780Irina Svishchevahttps://biarri.com/wp-content/uploads/2022/05/Biarri-White-Logo-Tag-Line-700-×-700-px-300x300.pngIrina Svishcheva2022-01-11 18:12:032022-01-17 08:42:42The Economics of AI: Delineating the economic limits to AI adoption
With a fast moving marketplace and the rapid growth in software and technology, keeping up to date with industry trends can be all too much. But for those who are mindful, staying up to date can help keep your organisation competitive and ahead of the proverbial ‘curb’. Here are 4 tips for Operational and Logistics Managers looking to improve their outbound logistics supply chain.
Investing in outbound logistics technology
We’ve all heard the saying before – ‘the more you put in the more you’ll get out’ but that doesn’t always mean pouring thousands of dollars in the latest tech. Sometimes investing more time can be just what you need. It is important in this ever changing climate for key stakeholders to take a step back and look at their supply chain operation from a holistic view to understand where technology can plug in to replace or improve specific functions. This can be as simple as automating the scheduling and planning process and creating an optimised set of delivery schedules.
Transparency is Currency
Transparency is key! It sounds simple enough but the benefits of having greater visibility over your operations are endless. From being able to pinpoint deliveries and trucks, to having a deeper level of insight into service outputs; an increased level of visibility removes the speculation when making decisions and allows you to make decisions based on the facts and in real time! Manage your costs more effectively and see where in your supply chain there are inefficiencies. But how can you increase your visibility? See point 1 or speak to one of our team members today to find out how!
Ensure consistency with delivery schedules
The dreaded c word – no, not Covid, but consistency! Ensure a greater level of consistency across your delivery schedules through an automated system of planning. Managing consistency across delivery schedules can be difficult to maintain, especially when it isn’t automated or done by one person day in and day out. Creating a level of consistency doesn’t only benefit your truck drivers and your fleet but it also helps with building and strengthening relationships with customers by meeting SLA’s.
Future proof your operations
With what has unfolded in the last couple of years from circumstances outside of our control, we have seen the need for flexibility and a system capable of dealing with last minute changes and updates. Future proof your outbound logistics supply chain with a well organised system and take the digital transformation. A digital transformation will also help with managing transport logs and align communication channels across all departments.
Want to know more about these 4 tips? Enquiretoday and speak to a team member about how you and your business can improve your outbound logistics operation with Scopta Run and Route. From saving you time and reducing operational costs to providing more insight, Scopta Run and Route is the new and efficient way to plan delivery schedules and improve your outbound logistics supply chain!
Run and Route Contact Form
https://biarri.com/wp-content/uploads/2021/11/claudio-schwarz-q8kR_ie6WnI-unsplash.jpg53047952Irina Svishchevahttps://biarri.com/wp-content/uploads/2022/05/Biarri-White-Logo-Tag-Line-700-×-700-px-300x300.pngIrina Svishcheva2021-11-24 10:37:132021-11-24 12:53:154 Tips To Improving Outbound Logistics
As COVID descended upon the assisted care industry, many were unsure how they would survive. Providing education services for children with disabilities such as autism is not something that can be easily carried out remotely. As the healthcare crisis mushroomed into a potential years long drama, people were questioning whether the service providers could even survive.
This feeling of despair was facing most industries as they tried to desperately pivot their businesses to stay afloat. Organisations in sectors like e-commerce were well positioned to grow, others like the assisted care providers less so.
However, there have been some pioneers who have thrived. We can learn from their successes.
All businesses which have pivoted to digital have discovered one thing – a deluge of data. This deluge of data means that the next phase of growth out of COVID will be defined by two paradigms:
Businesses harnessing their digitally generated data to enter a new phase of growth defined by:
Cheaper and personalised marketing,
Extended flexibility in delivery of services and products
Better operating margins
Businesses who are unable to leverage their digital assets and will continue to struggle throughout the crisis praying for it to end unable to meet the challenge.
AEIOU is a provider of educational services to children with autism. Their mission is to provide early intervention that enables children with autism to live their best lives.
In early 2020, it became clear to their dedicated team that the year was going to be different. As the global economy grinded to a halt and social distancing became the norm, the staff began worrying that possible COVID outbreaks in their centres could shut them down.
However, they had a trick up their sleeve – the Little Steps educational platform.
Over the previous nine months, the AEIOU team had been working indefatigably with Biarri to bring a disruptive new technology to the industry which would:
Remove the need for large paper folders transported around in trolleys;
Improve the efficiency of staff content delivery;
Make home based delivery possible and
Create a treasure trove of digitally collected, consistent and high quality data to be analysed for deep treatment and progress insights
And it would be this final point which has the potential to not only revolutionise the disability care sector but all sectors.
But how? And why?
AI Driven Business Decisions
Like AEIOU, across the globe many businesses are in the final stages of a planned digital transformation or one brought on by COVID. Those businesses which have already completed this process are now looking for ways to leverage the data being collected by the new digital processes and turn it into value.
So what is the best way to do this?
By combining your data with intelligent analytical tools to help make better decisions.
Having good quality data in a consistent format, collected by digital channels, allows companies to apply powerful analytical tools to this information and use it to help understand:
What will the future look like? I.e. make reliable predictions
What is the best decision to make? I.e. optimise choices to maximise returns and organisational growth
The Biarri Workbench
The problem is that data driven, decision-making normally begins with the in-house development of low-tech tools to manually solve key business problems. As businesses grow, they must move their Excel sheets to the automation of core business processes via mathematical tools to enable better decision making. Why?
Replacing error prone, slow, manual and insecure processes with robust, fast, automated and secure AI tools enable new phases of growth.
By providing digital tools to make optimal decisions, front line staff can move from manual, repetitive and error prone tasks to high value scenario analysis and answer key questions for senior management around future states and optimal strategies. What does this achieve?
It increases the value output per employee via automation and outmaneuvers competitors with better decisions
By using AI to create value, companies can begin the AI driven digital transformation journey as shown in the below image.
But how can a company climb this curve? The details of this transformation are represented in the following diagram.
With the early learning platform, AEIOU have built the foundation of their digital strategy and the logical next step in their transformation is ground-breaking. By digitally capturing the data on learning outcome improvements for children with autism, they can discover new methods that can transform the journey for some of society’s disadvantaged.
Even greater for AEIOU was that their digital platform, Little Steps, was ready as Australia went into lock down. They were able to leverage it to continue the challenging remote learning regime required to not interrupt the learning process for their children.
This wasn’t the first app Biarri had built to enable companies to thrive during the COVID challenge. Biarri has built over a hundred apps to help companies all along the journey of turning data into value.
What role does Biarri play in this transformation?
Biarri’s main value proposition is to help clients realise operational excellence in the way they run their business. The core of this is excellent, data driven decision making.
How do we do this?
Biarri catalyses AI driven business decisions by employing its cutting edge Workbench platform. The Workbench platform empowers Biarri’s customer base in the form of value-creating production tools.
In the words of businesses we work with, the benefits of a data driven approach leveraging mathematics are that it:
Helps make better decisions
Improves efficiencies & saves time
Reduces cost
Improves a business’ core product / service delivery
Is easier to use than alternatives (e.g. better than Excel)
Allows real time and scenario planning abilities
In AEIOU’s case we built a digital platform with plug and play analytical capabilities. This could tap into automated and optimised rostering tools and lead a true AI driven digital transformation. In the words of their CFO:
“The development process with Biarri has been a great success. The team went above and beyond to deliver on our requirements and were engaged, helpful and responsive in understanding the complex needs of our business. The challenge Biarri solved was complex, however, the entire process from development to operation was collaborative and professional and we look forward to continuing our partnership with them.“
Matthew Walsh, CFO, AEIOU
Does this apply to me?
Biarri delivers solutions to a wide range of industries. The mathematics which powers our AI knows no boundaries and one powerful model can underpin the efficiency gains in profoundly different industries, from aviation through to the healthcare.
To discuss how you can leverage your data and turn it into value, with AI Driven Business Decisions, reach out with the form below.
Get in touch
https://biarri.com/wp-content/uploads/2020/09/carlos-esteves-G8wvNzm_fK0-unsplash-scaled.jpg16952560Ash Nelsonhttps://biarri.com/wp-content/uploads/2022/05/Biarri-White-Logo-Tag-Line-700-×-700-px-300x300.pngAsh Nelson2021-11-17 14:20:002022-02-09 09:23:12AI Driven Business Decisions
At Biarri one of our biggest value drivers is being able to transform businesses through leveragingdata to help make better business decisions. At the core of turning that data into value is our team of Data Scientists. In a recent article published on abc.net, author Antonia O’Flaherty discusses the growing demand for data scientists and the ‘surge’ for Data Science degrees.
To read the full abc.net article click the following link.
The career for the future
Described as ‘The sexiest job in the 21st century’ by the Harvard Business Review, Queensland universities have seen a large increase in enrollments and popularity. Griffith University alone has seen an increase of 400percent and has since introduced Data Science into two double degrees.
The growing attraction has also seen a surge in enrollments at both Queensland University of Technology (QUT) and at the University of Queensland (UQ).
QUT has seen a steady increase in enrollments since launching its postgraduate Master of Data Analytics in 2019 with QUT students said to be ‘future-proofing’ their careers by Professor Troy Farrell, the executive dean of QUT Faculty of Science.
Since the introduction of the program at UQ, over 5 years approximately 700students have taken to the classroom, taking up several new degrees on offer at the University of Queensland.
Data Science and what it means for Biarri
Our very own Head of analytics, DrEvanShellshear is a guest lecturer at leading universities on the eastern border, and predicts that Australia alone will need an additional 30,000 data scientists come 2031.
Head of Analytics, Dr Evan Shellshear
“What we are seeing coming out of universities alone is that we are not going to meet that demand, so there will always be a gap.”
As a Tech-business based here in Brisbane, Biarri continues to provide a fun and exciting working environment for DataScientists and Mathematicians to be able to apply what they learnt in University and apply it solving real life problems across multiple industries. From Energy and Mining to Retail, data scientists are applying their skills to a multitude of different business problems and providing valuable real life solutions.
Full time Biarri employee and recent UQ graduate DillonSteyl, graduated with a Mathematics and Computer Science degree, is relishing working at Biarri and making a positive impact for businesses.
Recent UQ graduate, Dillon Steyl enjoying his new role at Biarri.
“I have always liked mathematics and statistics, and here at Biarri I get to use those fields to solve real world problems. That is the biggest appeal for me.”
Dillon adds “There are lots of really positive, passionate and friendly people here at Biarri, and we all focus on solving one problem together and making the world a betterplace. It is quite a special experience.”
Biarri is always on the lookout for promising and excited graduates. For more information or if you have any questions please reach out today!
Get in touch
https://biarri.com/wp-content/uploads/2021/10/Dillon-Steyl-Biarri-1-e1633478270713.jpg5431000Irina Svishchevahttps://biarri.com/wp-content/uploads/2022/05/Biarri-White-Logo-Tag-Line-700-×-700-px-300x300.pngIrina Svishcheva2021-10-06 11:32:492021-10-06 12:44:28The growing demand for data scientists and what it means for graduates at Biarri
For Logistic Managers and Delivery Schedule Planners, organising and ensuring the delivery of goods from your warehouse to your customers, within agreedservicelevels, requires a well configured delivery schedule. This was the case with LPG gas distributor Genesis, planning a multi-vehicle delivery operation with constraints and variables became a mammoth task, through ‘manual’ methods and clunky paper-based systems.
Read on to see the common challenges that Genesis faced with their last-mile delivery planning, and how they were able to transform their planning through Scopta’s Run and Route.
‘Manual’ Methods
By ‘manual’ methods, we mean planning delivery route schedules through traditional methods such as white boards, Excel spreadsheets, bundled sets of consignment notes and Google Maps.
1. Manual route planning is prone to human error and requires time
‘Manual’ planning methods through spreadsheets and mapping tools require a lot of time and effort to do correctly, to ensure all your deliveries are accounted for. But when you have deadlines on when delivery schedules are ready for your fleet, how can you ensure the accuracy and efficiency of your plans?
For the team at Genesis the complexity of a last mile delivery task increased significantly with only a few constraints such as cargo / vehicle compatibility or constrained delivery windows. Even their very experienced planner struggled to manually calculate a highly optimised schedule that satisfied all customer requirements.
Having to go back and forth between Google Maps and delivery lists, while creating a spreadsheet increases the chances of making mistakes that could prove costly. Manual planning or ‘planning by hand’ is complex and prone to human error. This can result in inefficient routes, increased delivery time and cost and worse – losingcustomers because of late or missed deliveries.
Even with a great manual planner on your staff, there is significant key personnel risk when all of the required knowledge is invested in one to two people, rather than systematised in a scheduling application.
2. Manual route planning is inefficient and expensive
We’ve seen how ‘manual’ delivery route planning is a notoriously difficult task and puts at risk your ability to meet customer SLAs. The second issue is the cost and inefficiency that manual planning can drive into your distribution function.
As a direct result ‘manual’ planning can impact your bottom line through poor route planning and mismanagement of resources such as:
Increased capitalinvestment due to operating a larger transport fleet than required;
Increased labourcosts due to drivers travelling longer distances and working longer hours, and
Increased fleet operatingcosts.
Why settle for a competent delivery schedule, when you can have an optimised delivery schedule, that meets your requirements and can see your team save time and reduce operational costs?
3. Managing growth and have the ability to scale is difficult with ‘manual’ route planning
One major challenge with ‘manually’ route planning is dealing with change and scale as was the case with Genesis and their growing demand for LPG gas bottles. The ability to manage growth through adding more deliveries and locations ‘manually’ placed added pressure on their already lengthy and difficult process. The only real solution by way of their current ‘manual’ process, was simply putting in extra effort and time to correctly cater to new customers and businesses.
Another challenge was being able to manually plan for last minute changes and added deliveries. This took the form of specific road closures and re-planning delivery routes, delivery windows and changing availability from customers, and additional deliveries to name a few. The ability to deal with adverse change is restricted and difficult through ‘manual’ planning.
By not having an agile system lead to poor delivery schedules with inefficient delivery routes. Not to mention the stress placed on Logistic Managers to add additional delivery locations and the additional pressure placed on Delivery Drivers to meet their deadlines.
Digitally Transforming Genesis – From ‘Manual’ planning to Scopta’s Run and Route
Scopta Run and Route is an automated solution that helped Genesis deal with the complexities of operating last-mile delivery. As described earlier, manually planning delivery route schedules raises many challenges around the significant amount of time and effort required to create a delivery schedule, the inefficiencies of manual planning and the difficulty of dealing with change and ability to grow and scale.
“Moving to digital made sense as it would improve the processes, and drive cost savings. The bonus from the proof of concept was we were able to use our data to categorically prove that optimisation would realise operational savings, which in turn made the business case an easy sell.”
General Manager of Genesis , LPG operations, Cameron Jardine
AWS Partner Network
Scopta Run and Route leverages the AWS services toolkit. As part of the solution we use AWS EC2 to run the optimisation workloads, AWS S3 to store application information, AWS PostgreSQL RDS to manage the workload data tables, AWS EKS to ensure a highly available and scalable workload, and AWS Elasticache to queue and manage tasks.
Since partnering with AWS and joining the AWS Partner Network (APN), Biarri has been able to identify new opportunities to scale. Through leveraging AWS services, we have greater confidence in developing tools that align with our mathematical and analytical Biarri approach. AWS provides a platform that is not only quick but secure, giving our clients around the world assurance. Biarri will continue to acquire additional AWS data and analytics competencies, as we continue to increase our reach.
For more information around Scopta Run and Route or to start a free trial, get in touch with one of our team members today.
Navigating through last-miledelivery offerings can be a daunting task as you figure out which routeplanningsoftware tool is the most applicable for your team, your businessoperation needs and budget. When considering Biarri’s Run and Route planning software, there can be a range of important factors to consider, such as:
Finding the best tool to reduce your operational costs and improve your bottom line;
Purchasing the necessary functionality to streamline current business planning and supplychainmanagement,
Identifying gaps within your current operations that could benefit from an automated software solution, as you seek to make technological advancements,
Selecting the correctrouteplanningtool that has the capacity to deal with your business intricacies and complexities, such as delivery windows, drop off specifications and vehicle compatibility.
As you work through the finer details of other route planning software providers take a look through our customer profiles to see which one best aligns with you and your business.
Customer Type Summary
Customer Profile
Pain Points and Challenges
General Manager
Reducing operational costs. Managing day to day to operations
Vice President of Logistics and Planning
Meeting customer demand and ensuring a safe and smooth operation. Supply chain management and refining processes
Digital Transformation Manager
Improving business processes through AI solutions. Simplifying and streamlining procedures
Delivery Schedule Planner
Creating a efficient delivery schedule that meets customer demand
Are you a General Manager?
Biarri’s Run and Route’s first customer profile describes General Managers of medium to large sized organisations (200+ employees). They hold a management position within the organisation – and are charged with overseeing the day to day service and deliveries of their distribution centre. With broad industry experience and academic qualifications, this GM drives strategy and performance across his business in revenue growth, cost reduction, operational efficiency and customer experience.
As business and demand continues to grow so does the business’s costs; mindful of their bottom line and an eye into the future, they seek alternative options that can aid the deliveryschedulingteam in being able to meet their customers’ needs by making deliveries on time and on demand, and reducing the man hours spent on creating schedules through old hand method ways like Excel and Google maps.
Does this sound familiar? If so, our Run and Route tool helps solve the above challenges by creating an optimal and efficient set of routes, reducing drivers’ travel distance and accelerating the delivery process.
Are you a Vice President of Logistics and Planning?
Aligned closely with the General Manager, Scopta’s Run and Route next profile holds an executive role within the company and leads the logistics and planningfunctions. Tasked with ensuring the quality, efficiency and scalability of the supply chain, the Vice President of Logistics and Planning is constantly looking for systems, processes and technical solutions to gain and maintain competitiveadvantage.
Overseeing the supply chain processes of a large distribution centre of a goods company, they take a great deal of interest in businessprocesses and deliveryoutcomes and performance, with a desire to stay at the forefront of the industry. Taking a measured approach to how best to improve the service and delivery of their goods, they are on the constant lookout for solutions that can streamline the planning of delivery schedules and achieve efficient and costeffectiveplanning.
Open to technology advancement, they see the implementation of a route planning software program as a great advantage for route planning for more efficient delivery schedules.
Does this sound familiar? If so, our Run and Route tool helps solve the above challenges by being market leaders in route optimisation, and being a functional and agile tool that simplifies the way you plan and deal with last minute adjustments.
Are you a Digital Transformation Officer?
With an eye to the future and a strongunderstanding of current business operations, our next profile looks to advance the company through digitalisation and with the integration of artificialintelligence. As a key decision maker with a background in information technology, they are motivated by efficiency and productivity, constantly looking to refine and improve supply chain processes. With a view to automating and digitising where possible, the Digital Transformation Officer sees potential to improve the last-mile delivery planning process, which currently involves a mixture of data sources, manual processes, online mapping tools and excel spreadsheets. This results in labour intensive processes, a lack of optimisation, barriers to scalability and key personnel risk.
The Digital Transformation Officer plays a vitalrole in the continual refinement of these practices, looking to streamline their processes through optimisation as they look for the best route planning software for their business requirements.
Does this sound familiar? If so, our Run and Route tool helps solve the above challenges through automated route planning solutions. Streamline the way your team plan and organise their trucking fleet, with a single tool containing all the functionality your team needs to deal with your business requirements.
Are you a Delivery Scheduler Planner?
Last but not least, the Delivery Scheduler. They have the critical role of planning the routes and delivery schedules for their 20+ trucking fleet. Equipped with nothing more than a spreadsheet, an online map and vast experience (perhaps having been a delivery driver themselves), they spend the better part of their week organising delivery schedules.
Motivated by meeting customers’ demand and ensuring deliveries are completed, there are many variables and barriers that they face. Dealing with the complexities of considering delivery windows, driver availability, infrastructure and truck requirements and specific load types, all while making sure delivery schedules are ready by the first delivery is a time-consuming and extremely difficult task when completed by hand.
Perhaps a route planning software tool could help?
Does this sound familiar? If so, our Run and Route tool helps solve the above challenges through its powerful optimisation engine. Be enabled to do more with a centralised system that deals with complex scenarios and variables, ensuring that you produce not only an error free delivery schedule but an efficient and cost effective set of routes.
Speak to our team now based on your above persona
If any of the following profiles or challenges resonate with you and your business, please reach out to one of our team members to discuss how Biarri’s RunandRoute can assist, using the below contact form.
With a strong understanding of the constraints and challenges last mile delivery and route planning entail, the team behind Biarri’s Run and Route are dedicated to working along side you to improve your business processes and route planning through automation and optimisation.
Run and Route Contact Form
https://biarri.com/wp-content/uploads/2021/08/Screen-Shot-2021-08-05-at-10.47.22-am.png18943360Irina Svishchevahttps://biarri.com/wp-content/uploads/2022/05/Biarri-White-Logo-Tag-Line-700-×-700-px-300x300.pngIrina Svishcheva2021-08-05 12:46:372022-07-13 12:45:35Lead the way with the right route planning tool for you and your business
With the end of the Financial year coming to close, and as Businesses continue to adjust to our new normal, the team behind Biarri Workforce continue our commitment to improve and simplify workforce rostering and planning. With our users in mind, our development team has updated and created additional functionality to equip you the user with the necessary tools to improve the way you:
View KPI’s and create reporting for exporting;
Manage your employees work schedules across multiple rosters
Improve visibility of rosters when planning with simplified user interface functionality and
The way employers manage employees fatigue and qualification compliance
Read on to see how BiarriWorkforcecontinues to simplify and prepare your workforce scheduler to create optimised workforce rosters and work schedules.
Roster Export Additional Employee Columns
Reduce confusion and assure your employees with the option to increase your employees visibility with additional ‘Employee Fields’. When downloading or exporting your roster, you have the choice to include or exclude the following employee details from your roster. Better manage your employees’ details with the new employee columns.
2. Include shifts from non-primary roster
Better manage individual employee rosters by being able to include shifts from non-primary rosters. When downloading rosters, include or exclude shifts from non-primary rosters with Biarri Workforce’s new toggle option. Perfect for employees who work across multiple departments and perform multiple functions, keep track and improve the way you plan and organise their roster.
3. Customisable report titles
Create clearer reports and configure ‘titles’ and ‘subtitles’ before downloading your roster. With the ‘Suggested Titles’ selector – correctly title and label your rosters based on intelligent suggestions.
4. Roster KPI’s – Paid hours/ total days sub totals
Make more informed decisions with Biarri Workforce’s improved ‘RosterKPI’s’. With the enhanced KPI functionality, users will have the option to view the sub-total paid working hours and total days. Helpful and useful when dealing and managing fatigue, increase your workforce planners and users visibility over working hours, ensuring employee hours do not exceedCBAregulations.
5. Powerful roster view filters
Improve your userexperience with the new Biarri Workforce filter options. By clicking on the following ‘filter’ icon dropdown in the ‘Rostering’tab, your user will now be able to organise and switch views by selecting the necessary filters, creating a more clearer and purposeful roster.
6. Fatigue and Qualification Compliance Reporting
Found in the ‘Admin’tab, users will now be able to export fatigue and qualification reports under the ‘Roster Validation’ sub header. Make compliance and safety a priority by ensuring you have the correct employee with the correct qualification, to perform the necessary tasks. With ‘Roster Validation’reporting, your WorkforcePlanners and users will be able to stay up to date with employees who do not satisfy the requirements to perform specific tasks and roles. From alcohol tests to site compliance, roster validation will highlight when employees are in breach of rule specifications outlined.
If you want to know more about any of the features mentioned above, we invite you to leave your contact details in the contact form below and one of our team members will get in touch with you. Or if you want to know more about Biarri Workforce follow this link.
Workforce Contact Form
https://biarri.com/wp-content/uploads/2018/01/rostering_side.png6671000Irina Svishchevahttps://biarri.com/wp-content/uploads/2022/05/Biarri-White-Logo-Tag-Line-700-×-700-px-300x300.pngIrina Svishcheva2021-07-22 11:45:312021-07-22 11:45:33Biarri Workforce New Feature Release: July Edition
On the 12th of June, the team at Biarri were invited to attend and support the ‘Raising the Roof’ Gala Ball held by the AEIOU Foundation at the Emporium Hotel in Southbank, Brisbane. The night was filled with great food and drink and fun as the team stood in solidarity with AEIOU’s efforts in raising funds for Australian children and families living with autism. Through a silent auction and many generous donations, AEIOU managed to raise over $100,000 dedicated towards the construction of their new learning centre.
The Biarri team treated to a five piece band and illusionist as they enjoyed their exquisite 3 course meal
AEIOU Foundation for children with autism was founded in 2005, with a mission to provide early intervention that enables children with autism to live their best lives. Since 2005 and the establishment of their first centre in Moorooka, the Foundation provides early intervention learning programs for children aged between two to six across Queensland and South Australia. Fast forward to the present and AEIOU continues to make a positive impact on Australian families with autistic children through their educational services.
The Biarri Team Enjoying Themselves
Biarri and AEIOU partnered in 2019 and worked in tandem to change the landscape of how AEIOU delivered their learning programs. Challenged with managing their clinical data and limited staff, AEIOU approached Biarri to create a streamline application to digitally capture children’s data for clinical assessment and create a platform to deliver their learning programs. Through Biarri’s ‘Little Steps’ educational application, parents and carers are now supported with an intuitive application that:
Improves the efficiency of staff content delivery;
Streamlines generating reports;
Removes manual large paper folders and records and
A centralised data hub to be analysed for treatment and progress insights
Biarri would like to extend a warm thanks and congratulations to the team at AEIOU Foundation for their continual work in creating awareness and raising funds to assist children with autism. Biarri champions ‘Positive Impact’ as one of our core values and we take great satisfaction in being able to assist great causes. We look forward to continuing our partnership and are excited to see the positive changes the new learning centre will bring to children and families.
Get in touch
https://biarri.com/wp-content/uploads/2021/07/Header.png357558Irina Svishchevahttps://biarri.com/wp-content/uploads/2022/05/Biarri-White-Logo-Tag-Line-700-×-700-px-300x300.pngIrina Svishcheva2021-07-15 10:51:032021-07-15 10:51:04A night to ‘Raise the Roof’ with the AEIOU Foundation for children with autism
We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, you cannot refuse them without impacting how our site functions. You can block or delete them by changing your browser settings and force blocking all cookies on this website.
Google Analytics Cookies
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visist to our site you can disable tracking in your browser here:
Other external services
We also use different external services like Google Webfonts, Google Maps and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Vimeo and Youtube video embeds:
Privacy Policy
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.