Posts

Supply Chain, Logistics and Mining at BAM 2016

Supply Chain, Logistics and Mining at BAM 2016

The Biarri Applied Mathematics Conference is on again and registrations are open for 2016. This year BAM will be covering  a range of presentations across supply chain, logistics and mining optimisation. With our supply chains becoming more and more complex don’t miss out on exploring how optimisation can be used.

Extending the MIP toolbox to crack the Liner Shipping Fleet Repositioning Problem

Robin Pearce will be delving into the Liner Shipping Fleet Repositioning Problem (LSFRP) which involves repositioning ships between service routes while maximising profit. This presentation will demonstrate how this problem can become quite large, with multiple ships, thousands of potential cargo transfers and tens of thousands of arcs. A straightforward MIP implementation can solve small scale problems, however the problem quickly becomes intractable..

In this presentation Robin will show us how he has managed to reduce solve times from hours down to a few minutes.

Robin Pearce is a mathematics student at the University of Queensland. After studying a Bachelor of Science with Honours in Applied Mathematics at UQ, he spent two years as a Graduate Fellow with CSIRO working on three-dimensional microstructure modelling. He is now a PhD student with Michael Forbes, once again at UQ. His main topics of interest are the use of lazy constraints and disaggregated Benders decomposition for solving large and difficult integer and mixed-integer programs.

Optimal facility location and equipment selection for whey re-use

Whey is a by-product of cheese making that is a potentially important source of nutrients, but which currently goes to disposal in many parts of the world. In this presentation, Rasul Esmaeilbeigi will analyse the efficiency of investment in whey-processing with the aim of releasing the productive potential of currently unexploited whey supply chains. Rasul will describe a decision support model for production and distribution of products derived from whey that extends a globally inclusive facility location problem. The basic tenet of the model is that equipment selection during the initial stages of facility planning is critical, as capital costs in the early stages of supply chain design go into purchases of new machines and site conditioning. The model selects the optimal combination of whey processing equipment, facility locations and transportation routes subject to budget, equipment availability and final product requirements.

Rasul is currently a PhD. candidate in the school of mathematical and physical sciences at the University of Newcastle. he holds a master’s degree (2014) and a bachelor’s degree (2012) in Industrial Engineering. Rasul has expertise in the field of Mathematical Programming and Combinatorial Optimization and also general knowledge and experience of programming languages for solving large scale optimisation problems.

Multiple Yard Crane Scheduling with Variable Crane Handling Time and Uncertain Yard Truck Arrival Time

Container yard performance heavily depends on the efficient operations of yard cranes. Yong Wu will discuss the multiple yard crane scheduling problem with variable crane handling time and uncertain yard truck arrival time. Here the variable crane handling time refers to the variable time of handling each individual container, while the uncertain yard truck arrival time relates to the actual arrival time of trucks that are dispatched to either pick up or drop off containers. While there is a rich body of literature addresses the multiple yard crane scheduling problem in a deterministic operational context, there is a paucity of research incorporating these uncertain factors.

Dr Yong Wu is a Senior Lecturer at the Department of International Business and Asian Studies within the Griffith Business School. Yong holds a PhD in Operations Research and an MEng in Mechanical Engineering and has worked for The Logistics Institute – Asia Pacific, a joint venture between National University of Singapore and Georgia Institute of Technology (2005-2008), and the Institute for Logistics and Supply Chain Management, Victoria University, Australia (2008-2010). He teaches in the area of logistics and supply chain management and his research interests are in logistics and supply chain management, operations research and engineering optimisation.

Machine learning methods for mineral processing

Machine learning emerged as a subject area in the late 1950s; yet to date there has been little application of machine learning to mineral processing.

There are of course many ways that machine learning can be applied. Stephen Gay will pursue a probabilistic framework, strongly related to the new subbranch of mathematics called information theory.

The approach is to use far less samples than conventional methods and to infer many of the missing variables – indeed to infer the missing variables at a great level of depth (distribution of multimineral particles at each stream). By inferring this information we have a ‘snapshot’ of unit models for each series of plant data. Machine learning algorithms are then applied to parameterise the models according to operational parameters.

Dr. Stephen Gay originally graduated from University of Queensland [BSc (hons/Applied Maths)]. His domain areas have largely been in physical oceanography, mining (PhD), image analysis and geometric probability. The main area of mining is the development of software for optimising mineral processing plants. He received most of his grounding in mathematical modelling for mineral processing at the Julius Kruttschnitt Mineral Research Centre (JKMRC) – and in 2008 development his own independent consulting and contracting business which has since evolved into a startup Company: MIDAS Tech Intl. In 2014 he patented a method that enables the estimation of detailed mineral processing data from simple measurements – and has largely been focusing on getting interest in this new method from Mining Companies and Universities.

Our philosophy is to make the power of mathematics accessible. Why? Because we think it isn’t currently very accessible, this limits the number of people who can use it to get value and reduces the value derived by those who do use it, and that’s a crying shame in a world that desperately needs efficiency. We have all seen it multiple times in multiple organisations. It’s the hard to use (probably ugly), not really fit for purpose (lots of workarounds), complicated IT (n tier, client/server, VM, Citrix, Oracle thing) approach to providing optimisation software.

COTS vs Bespoke

COTS (commercial off the shelf) puts the bars around accessible Mathematics: leads to crying babies

Our philosophy is to make the power of mathematics accessible. Why? Because we think it isn’t currently very accessible, this limits the number of people who can use it to get value and reduces the value derived by those who do use it, and that’s a crying shame in a world that desperately needs efficiency.

We have all seen it multiple times in multiple organisations. It’s the hard to use (probably ugly), not really fit for purpose (lots of workarounds), complicated IT (n tier, client/server, VM, Citrix, Oracle thing) approach to providing optimisation software.

So how did it come into being? Here’s how I see it:

“I’m unique; give me your shrink wrapped product!” – and other amusing procurement stories

Let’s assume requirements are done, I’ll save organisational scope bloat for another time. The next question is build or buy? How will we best get something that is a close match to need/requirements?

So a market search ensues only to discover that the requirements are pretty unique. So a custom/bespoke solution is required! That makes sense but most organisations quickly discover that bespoke = expensive (time and money), just like buying a tailor made suit is more expensive than buying off the rack.

It’s for this reason that hard core mathematics/optimisation solutions have mainly been consumed by capital intensive industries where spending a few million to save tens or hundreds of millions made the business case stack up.

Therefore organisations often seek a COTS (Commercial Off The Shelf) solution (often after an expensive run in with a bespoke approach), with the expectation that if they specify what they need and buy something “off the shelf” that fits then it should be low risk (time and money). It appears to be quite an entrenched view with Australian CIOs, and in some cases is justified, particularly in back office functions that don’t offer opportunity for differentiation. A point Wesfarmers Insurance CIO David Hackshall and DoD CIO Peter Lawrence make in an article by Brian Corrigan on itnews.com.au titled “How COTS became Australia’s default software setting”.

In the world of mathematics, optimisation and advanced planning and scheduling it would be a very rare occasion with a simple set of generic requirements where COTS really worked. Take one of the classical problems where mathematics are applied, vehicle routing. This is a well picked over area and sounds simple enough. Nonetheless, vendors fill niches within this niche in order to provide a match to requirements. As the Vehicle Routing survey in February 2014 issue OR/MS Today says “VR customers are different, and so are their routing needs and problems, which require flexible, innovative answers”.

Vendors react to this COTS centric procurement environment in a predictable way, and of course say they sell COTS because otherwise when they get evaluated on the inevitable RFX criteria they would fail miserably. The solution? They will (and I’ve been there) include “configuration” or “installation services” as ways to mask software development. The result? You get something that wasn’t a great fit with lots of add on development to meet your requirements. It’s hard to use, slow and doesn’t really provide the solutions you were hoping for. In many cases you end up with the worst of both worlds, the cost of bespoke but the poor fit of COTS.

As the aforementioned itnews.com.au article says “The middle ground between buying readymade software and building bespoke solutions is to customise a COTS package. Yet as many CIOs have discovered at great cost to their budgets and mental health, this can be a painful experience.”

This COTS/bespoke paradox is the problem we saw and it is what we aim to address. So what does Biarri do differently? We take the benefits of bespoke and make it cheaply and quickly. You could say we aim to provide the best of both worlds.

Do the math

How do we do it? First of all, we do the maths first! Prove you can solve the underlying problem and that’s it is worth solving before investing in the delivery mechanism. Once you know there is value in the maths, make sure people can digest it via a well-designed solution. The Biarri Workbench is our SaaS platform that allows us to very quickly develop easy to use, custom applications with unique workflows with an iterative/agile and light deployment.

Who says B2C owns good UX?

Easy to use means designed with the user in mind. In the consumer world (B2C) this is the natural order of things (thanks Apple). In the business world (B2B) this has taken a back seat, and that’s where our industrial designers come in. Working with users to really understand how they do their job and will interact with the system. Producing mock-ups/concepts and getting early feedback before a line of code is written.

So now we’ve proven the maths will provide value and designed a solution that users will love to use.

Mock up example

Our philosophy is to make the power of mathematics accessible. Why? Because we think it isn’t currently very accessible, this limits the number of people who can use it to get value and reduces the value derived by those who do use it, and that’s a crying shame in a world that desperately needs efficiency. We have all seen it multiple times in multiple organisations. It’s the hard to use (probably ugly), not really fit for purpose (lots of workarounds), complicated IT (n tier, client/server, VM, Citrix, Oracle thing) approach to providing optimisation software.

Rinse and Repeat

What comes next is turning this into reality quickly, cheaply and iteratively. Quickly and cheaply are thanks to the Biarri Workbench providing security, common database, existing UI components, libraries and widgets that enable a custom built application to be constructed very quickly. And “iteratively” is thanks to being web delivered which means we can provide early access to users to start providing feedback. Agile development takes on real meaning as users see the mock-ups they helped design come alive in their web browser mere weeks (or even just days) after designing them. Engagement and user buy-in are huge as feedback is provided, incorporated and delivered instantly. Australia Posts CIO Andrew Walduck understands this approach, “The number of times I’ve seen operating models where you start with requirements on one side, you dump it into operations on the other, and it fundamentally misses the point”.

Tool UI Example

Example of tool UI

It takes different strokes to move the world… yes it does

Do you remember the late 70’s early 80’s TV series “Different Strokes”? I use to love the theme song.

Everybody’s got a special kind of story
Everybody finds a way to shine,
It don’t matter that you got not alot
So what,
They’ll have theirs, and you’ll have yours, and I’ll have mine.
And together we’ll be fine….

When you start looking for your next optimisation, analytics or advanced planning and scheduling solution and your CIO/CFO says “budgets are tight and you can’t buy bespoke, you have to go COTS”, remember “it don’t matter that you got not a lot… you’ll have yours” because Biarri has a special kind of story.

Portfolio Items